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Abstract — We are using parallel geostatistical codes to study
spatial relationships among biospheric resources in the Cerro
Grande Wildfire Site, Los Alamos, New Mexico, and Rocky
Mountain National Park, Colorado. For example, spatial
statistical models based on large- and small-scale variability have
been used to predict species richness of both native and exotic
plants (hot spots of diversity) and patterns of exotic plant
invasion. However, broader use of geostastics in natural resource
modeling, especially at landscape and regional scales, has been
limited due to the large computing requirements of these
applications. To address this problem, we implemented an MPI
version of kriging on a Beowulf cluster that shows nearly linear
scaling and a 31x speedup on 32 processors. These techniques are
proving effective and provide the basis for a national decision
support capability for invasive species management that is being
jointly developed by NASA and the US Geological Survey.

1. INTRODUCTION

The NASA Office of Earth Science and the US
Geological Survey (USGS) are developing a National
Invasive Species Forecasting System (ISFS) for the
management and control of invasive species on Department
of Interior and adjacent lands [1]. The project is using early
detection and monitoring protocols and predictive models
developed at the US Geological Survey Fort Collins
Science Center to process NASA and commercial data and
create on-demand, regional-scale assessments of invasive
species patterns and vulnerable habitats. As part of this
effort, we are developing parallel geostatistical codes that
improve the accuracy and efficiency of geospatial models
that map a variety of biospheric resources such as plant
species richness, natural plant diversity, and invasive
species richness. Here, we report preliminary results from
these activities on two project studies sites: the Cerro
Grande Wildfire Site in Los Alamos, New Mexico, and
Rocky Mountain National Park in Colorado.

II. INVASIVE SPECIES

During the past century, non-indigenous plants,
animals, and pathogens have been introduced at increasing
rates into all US ecosystems. A growing number of these
species are becoming invasive, and contribute to declines
in native species diversity, changes in ecosystem function,
and cumulative direct economic impacts currently
estimated at more than $137 billion annually.

An “invasive species” is defined as a non-native
species whose introduction causes or is likely to cause
harm to the economy, environment, or human health [2].
The cost of infestations of leafy spurge alone to
agricultural producers and taxpayers is $144 million/year
in the Dakotas, Montana, and Wyoming. Aggressive
invasive fishes in the Great Lakes threaten a commercial
fishery valued at $4.5 billion which supports 81,000 jobs.
Invasive Norway rats cause up to $19 billion/year in
environmental and economic damage. Non-native
livestock diseases cost $9 billion/year. In the coming
decades, increasing human travel and trade and changing
types and patterns of environmental disturbance are
expected to exacerbate these impacts. Because of its high
diversity of environmental conditions and habitats, the US
is particularly vulnerable to invasions.

In the United States, the US Geological Survey has a
lead role in delivering invasive species science information
on Federal lands. USGS technical and scientific capabilities
directly support management of Department of Interior
lands and waters by documenting, monitoring, and
predicting the establishment and spread of invasive species.
USGS studies the ecology of invading species and
vulnerable habitats to support prevention, early detection,
assessment, containment, and where possible eradication of
new invaders and investigates the physical properties,
composition, and hydrology of geologic substrates to
identify lands vulnerable to invasion of exotic plants.
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Figure 1. Diagram showing USGS geostatistical process for creating predictive spatial models for exotic plant
species, uncertainty, forest parameters, soil variables, and other biotic and abiotic factors. The process relies
on the creation of trend surface maps using regression, kriging, and co-kriging.

All of these efforts recognize the central role of space-
based sensors and advanced computational, modeling, and
information technologies. Both the potential for movements
of invasive species, and the susceptibility of sensitive
habitats to new invaders are known to be strongly
influenced by climate warming, changes in rainfall, soil
moisture, and runoff, and are increasingly driven by
extreme events. Many invasive species also greatly alter the
water relations, carbon storage, fire cycle, and reflectance
properties of landscapes, and may be an important feedback
link to climate.

III. TECHNOLOGY CHALLENGES

High resolution mapping of biological resources is
central to confronting the invasive species threat. Figure 1
shows the USGS process for creating predictive spatial
models. Basically, the process accepts as input a collection
of ecological attributes, such as topographic data, species
data, soil characteristics, ETM+ -derived vegetation
indices, etc. These attributes are examined for statistically
viable relationships between predictor variables and
response variables. Trend surface analyses are performed,
and residuals from the trend surface analyses are further
analyzed for spatial structure using kriging and co-kriging.
The results are brought together to produce a refined spatial

prediction that is accompanied by an estimate of
uncertainty. It is important to emphasize that the process’s
ability to produce both predictive maps and a maps of
uncertainty significantly increases its value for decision
support, since useful predictions are ultimately dependent
upon a quantifiable understanding of error.

A. Parallel Kriging

The kriging step is a major computational bottleneck
that we needed to overcome in order to adapt this process
to large applications [3]. Kriging is a spatial interpolator
that determines the best linear unbiased estimate of the
value at any given pixel in an output surface or image
using a weighted sum of the values measured at arbitrary
sample locations. It determines the weights and the spatial
continuity of the data as measured by the variogram. The
scalar kriging algorithm is a double loop over all rows and
for each pixel within the row. At each pixel we determine
the n nearest neighbor sample points and compute the (n x
n) distance matrix containing the Euclidean distance
between each sample points, and also compute the (z x 1)
distance vector from the pixel to each of the sample
points. The Euclidean distances are converted to statistical
distances by applying the variogram model to create a
covariance matrix and vector. We obtain the kriging



weights by multiplying the inverse of the covariance
matrix by the covariance vector. The computationally
expensive part of kriging is the inversion of the covariance
matrix, which is done at each pixel since the nearest
neighbor sample points can vary across the kriged surface.

The steps to estimate the value at each pixel are
independent of all other pixels. The algorithm is therefore
‘elegantly parallel’ and highly amenable to parallel
implementation via domain decomposition; we simply
assign to each processor a section of the output kriged
surface or image. We chose to decompose the domain
along the rows only, i.e. each processor works with full
rows of the output surface. This means we can leave
unaltered the inner loop over columns. We could
decompose into contiguous rows, effectively giving each
processor a strip of the output image. Instead, we chose to
assign consecutive rows to separate processors. Thus, for a
kriging 512 x 512 image using 32 processors, the first
processor would be assigned rows 1, 33, 65, ..., 449 and
481, while the last processor would calculate rows 32, 64,
96, ..., 480 and 512.

Both domain decompositions are equally load balanced
if the number of sample points used in the covariance
matrix is always the same at each pixel. This is the case
now, but soon we plan to implement an adaptive scheme
that will use more points in densely sampled regions and
fewer points in sparsely sampled areas. Significant load
imbalance would result if we assigned sparsely sampled
rows to one processor while assigning densely sampled
rows to another processor.

We have implemented parallel kriging in FORTRAN
using MPI, the Message Passing Interface. Our code
employs a ‘node 0’ controller process and a collection of
worker nodes. Prior to execution we copy to each node an
input data file containing the dimensions and cell spacing
of the output kriged surface, the variogram parameters that
describe the spatial structure, and the series of plant
diversity measurements (UTM X and Y coordinates and
the number of plant species at each location). Each node
reads this input data file, computes the kriged estimates
for its assigned rows, and then sends each row to node 0.
Node 0 only receives the data from the worker nodes,
assembles the kriged surface in memory, and writes the
final kriged estimates to its local disk.

We overlap the computation with the communication
to increase parallel efficiency. When the first row has been
calculated, we issue an asynchronous send (MPI_ISEND)
of this row to node 0. Since this is a non-blocking send,
the processor proceeds to calculate the second row. At the
end of this row, we issue a wait (MPI_WAIT) to insure
that the first row has been received by node 0 before
proceeding. For the smallest kriged surface we tested
(512 x 512) the compute time for each row is over 4
seconds — thus the first row has more than sufficient time
to be received and the wait call should also return
‘immediately’ (in reality, the latency time MPI’s

implementation of the MPI ISEND and MPI WAIT
calls). Meanwhile, node 0 posts a serial set of
asynchronous receive calls (MPI_IRECV) for each row
sent by the worker nodes, followed by a series of waits
(MPI_WAITS). When the waits are finished, each row of
data is copied into the appropriate location within the
output kriged array on node 0.

We have tested our parallel implementation on the
Medusa cluster at NASA Goddard Space Flight Center.
Medusa is a 64-node, 128-processor, 1.2 GHz AMD
Athlon cluster with 1 GB of memory per node and 2.3 TB
of total disk storage. Each node is connected to the others
with dual-port Myrianet. Node 0 is a Linux PC with a
single 1.2 GHz AMD Athlon processor and 1.5GB
memory, which resides on one of our desks and is
connected to the Medusa cluster via fiber Gigabit
Ethernet. We typically only log into Node 0, and to the
user it appears that all calculations are done on Node 0.

B. Results

We ran four test problems to evaluate the efficiency of
the parallel implantation. We held the number of input
data points constant at 79 (the size of the field sample data
set for Cerro Grande), while the output kriged image size
varied from 5127, 7687, 1024°, to 2048°. Table 1 shows the
results of our preliminary timing study. The processing
times shown are elapsed wall-clock time in seconds. As
expected, the kriging time increases in direct proportion to
the area of the output kriged surface (e.g. the 2048
problem ran 16x longer than the 512° case). The
processing times decreased nearly linearly as the number
of processors was increased, as shown in Figure 2. We
define the scaling efficiency for N processors as the ratio
of the 1-processor to N-processor wall-clock times divided
by N. The efficiencies we obtained were excellent, shown
in Table 2, ranging from 96-98% when using 32
processors and over 99% when using 16 or fewer
processors. The scaling efficiencies dropped slightly for
the 64 processor tests, but were still greater than 97% for
the 2048” problem. Figure 3 shows an example output map
produced by the modeling process.

Table 1. Timing Results (Elapsed Wall-Clock Seconds)

Number of Size of Kriged Image
Processors
2048° 1024 7687 512
64 583.9 147.5 84.0 38.4
32 1150.4 289.8 163.8 73.8
16 2285.1 573.89 324.0 144.7
8 4558.4 1142.0 642.8 287.2
4 9083.9 22774 1281.3 571.5
2 18190.4 4556.3 2562.0 1140.9
1 36252.7 9079.6 5107.0 2269.1




Table 2. Scaling Efficiencies

Number of Size of Kriged Image
Processors
2048° 1024° 768? 512
64 97.0% 96.2% 95.0% 92.3%
32 98.5% 97.9% 97.4% 96.0%
16 99.2% 98.9% 98.5% 98.0%
8 99.4% 99.4% 99.3% 98.8%
4 99.8% 99.7% 99.6% 99.3%
2 99.6% 99.6% 99.7% 99.4%
1 100.0% 100.0% 100.0% 100.0%
10°
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Figure 2. Scaling curves showing how processing times decrease
linearly as the number of processors increase.

IV. CONCLUSION AND FUTURE WORK

Dealing with the invasive species problem will require
a new class of hybrid predictive models — models that
combine temporal, spatial, mechanistic, stochastic, and
scenario-based approaches. These models also must be
scalable and able to accommodate the vast range of spatio-
temporal events that influence biospheric phenomena.
This work represents first steps toward the development of
advanced capabilities in this domain.

100

Predicted Spatial Map for Number of Exotic Species Richness with
Mapping Unit of 30 Meters at Cerro Grande Wildfire Site, New Mexico.
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Figure 3. Predicted exotic species richness on the Cerro
Grande Wildfire Site, Los Alamos, NM. This is an example
of the type of predictive spatial map used by USGS in
invasive species decision support.
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